當前位置: 主頁 > 名師指點 >

2017年考研數(shù)學高數(shù)證明題必考題型

2016-05-30 10:40 | 太奇MBA網(wǎng)

管理類碩士官方備考群,考生互動,擇校評估,真題討論 點擊加入備考群>>

  一、數(shù)列極限的證明

  數(shù)列極限的證明是數(shù)一、二的重點,特別是數(shù)二最近幾年考的非常頻繁,已經(jīng)考過好幾次大的證明題,一般大題中涉及到數(shù)列極限的證明,用到的方法是單調(diào)有界準則。

  二、微分中值定理的相關證明

  微分中值定理的證明題歷來是考研的重難點,其考試特點是綜合性強,涉及到知識面廣,涉及到中值的等式主要是三類定理:

  1。零點定理和介質(zhì)定理;

  2。微分中值定理;

  包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用來處理高階導數(shù)的相關問題,考查頻率底,所以以前兩個定理為主。

  3。微分中值定理

  積分中值定理的作用是為了去掉積分符號。

  在考查的時候,一般會把三類定理兩兩結合起來進行考查,所以要總結到現(xiàn)在為止,所考查的題型。

  三、方程根的問題

  包括方程根唯一和方程根的個數(shù)的討論。

  四、不等式的證明

  五、定積分等式和不等式的證明

  主要涉及的方法有微分學的方法:常數(shù)變異法;積分學的方法:換元法和分布積分法。

  六、積分與路徑無關的五個等價條件

  這一部分是數(shù)一的考試重點,最近幾年沒設計到,所以要重點關注。

  相關鏈接:

  MBA2017入學考試輔導招生簡章

返回頂部